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It may be that since one is customarily 
concerned with existence, […] fniteness, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-fnite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”
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It may be that since one is customarily 
concerned with existence, […] decidability, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-decidable algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”



  

A Decidable Problem
● Presburger arithmetic is a logical system for reasoning 

about arithmetic.

● ∀x. x + 1 ≠ 0

● ∀x. ∀y. (x + 1 = y + 1 → x = y)

● ∀x. x + 0 = x

● ∀x. ∀y. (x + y) + 1 = x + (y + 1)

● (P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

● Given a statement, it is decidable whether that statement can 
be proven from the laws of Presburger arithmetic.

● Any Turing machine that decides whether a statement in 
Presburger arithmetic is true or false has to move its tape 
head at least       times on some inputs of length n (for some 
fxed constant c ≥ 1).
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For Reference
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The Limits of Decidability

● The fact that a problem is decidable does not 
mean that it is feasibly decidable.

● In computability theory, we ask the question

What problems can be solved by a computer?
● In complexity theory, we ask the question

What problems can be solved
eficiently by a computer?

● In the remainder of this course, we will 
explore this question in more detail.



  

Where We've Been

● The class R represents problems that can be 
solved by a computer.

● The class RE represents problems where “yes” 
answers can be verifed by a computer. 

The mapping reduction can be used to fnd 
connections between problems.



  

Where We're Going

● The class P represents problems that can be 
solved eficiently by a computer.

● The class NP represents problems where “yes” 
answers can be verifed eficiently by a 
computer.
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The Setup

● In order to study computability, we 
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer 
these questions:
● What does “complexity” even mean?
● What is an “eficient” solution to a problem?



  

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

● Number of states.
● Size of tape alphabet.
● Size of input alphabet.
● Amount of tape required.
● Number of steps required.
● Number of times a given state is entered.
● Number of times a given symbol is printed.
● Number of times a given transition is taken.
● (Plus a whole lot more...)
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Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

Number of states.

Size of tape alphabet.

Size of input alphabet.

Amount of tape required.
● Amount of time required.

Number of times a given state is entered.

Number of times a given symbol is printed.

Number of times a given transition is taken.

(Plus a whole lot more...)



  

What is an eficient algorithm?



  

Searching Finite Spaces

● Many decidable problems can be solved by 
searching over a large but fnite space of 
possible options.

● Searching this space might take a 
staggeringly long time, but only fnite time.

● From a decidability perspective, this is totally 
fne.

● From a complexity perspective, this may be 
totally unacceptable.



  

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10
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Longest Increasing Subsequences

● One possible algorithm: try all subsequences, fnd 
the longest one that's increasing, and return that.

● There are 2n subsequences of an array of length n.
● (Each subset of the elements gives back a subsequence.)

● Checking all of them to fnd the longest increasing 
subsequence will take time O(n · 2n).

● Nifty fact: the age of the universe is about 4.3 × 1026 
nanoseconds old. That's about 285 nanoseconds.

● Practically speaking, this algorithm doesn't terminate 
if you give it an input of size 100 or more.



  

A Diferent Approach



  

Patience Sorting
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Longest Increasing Subsequences

● Theorem: There is an algorithm that can fnd the 
longest increasing subsequence of an array in time 
O(n²).
● It’s the previous patience sorting algorithm, with some 

clever implementation tricks.
● This algorithm works by exploiting particular aspects 

of how longest increasing subsequences are 
constructed. It's not immediately obvious that it works 
correctly.

● Phenomenal Exercise 1: Prove that this procedure 
always works!

● Phenomenal Exercise 2: Show that you can actually 
implement this same algorithm in time O(n log n).



  

Another Problem
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Shortest Paths

● It is possible to fnd the shortest path in a 
graph by listing of all sequences of 
nodes in the graph in ascending order of 
length and fnding the frst that's a path.

● This takes time O(n · n!) in an n-node 
graph.

● For reference: 29! nanoseconds is longer 
than the lifetime of the universe.



  

Shortest Paths

● Theorem: It's possible to fnd the 
shortest path between two nodes in an n-
node, m-edge graph in time O(m + n).

● Proof idea: Use breadth-frst search!
● The algorithm is a bit nuanced. It uses 

some specifc properties of shortest 
paths and the proof of correctness is 
nontrivial.



  

For Comparison

● Longest increasing 
subsequence:
● Naive: O(n · 2n)
● Fast: O(n²)

● Shortest path 
problem:
● Naive: O(n · n!)
● Fast: O(n + m).



  

Defning Eficiency

● When dealing with problems that search 
for the “best” object of some sort, there 
are often at least exponentially many 
possible options.

● Brute-force solutions tend to take at least 
exponential time to complete.

● Clever algorithms often run in time O(n), 
or O(n2), or O(n3), etc.



  

Polynomials and Exponentials

● An algorithm runs in polynomial time if 
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not 

typically induce enormous changes to the 
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce 

huge changes in the overall runtime.



  

The Cobham-Edmonds Thesis

A language L can be decided eficiently if
there is a TM that decides it in polynomial time.

 

Equivalently, L can be decided eficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
eficient computation, and it is 

somewhat controversial.
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The Cobham-Edmonds Thesis

● Eficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Eficient” runtimes:
● n1,000,000,000,000

● 10500

● Ineficient runtimes:
● 2n

● n!
● nn

● “Ineficient” runtimes:
● n0.0001 log n

● 1.000000001n



  

Why Polynomials?

● Polynomial time somewhat captures eficient 
computation, but has a few edge cases.

● However, polynomials have very nice mathematical 
properties:
● The sum of two polynomials is a polynomial. (Running one 

eficient algorithm, then another, gives an eficient 
algorithm.)

● The product of two polynomials is a polynomial. (Running 
one eficient algorithm a “reasonable” number of times 
gives an eficient algorithm.)

● The composition of two polynomials is a polynomial. 
(Using the output of one eficient algorithm as the input to 
another eficient algorithm gives an eficient algorithm.)



  

The Complexity Class P

● The complexity class P (for polynomial 
time) contains all problems that can be 
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time   
decider for L }      

● Assuming the Cobham-Edmonds thesis, a 
language is in P if it can be decided 
eficiently.



  

Examples of Problems in P

● All regular languages are in P.
● All have linear-time TMs.

● All CFLs are in P.
● Requires a more nuanced argument (the 

CYK algorithm or Earley's algorithm.)
● And a ton of other problems are in P as 

well.
● Curious? Take CS161!
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What can't you do in polynomial time?



  

start

end

How many simple 
paths are there 
from the start 
node to the 
end node?

How many simple 
paths are there 
from the start 
node to the 
end node?



  

, , ,

How many 
subsets of this 
set are there?

How many 
subsets of this 
set are there?



  

An Interesting Observation

● There are (at least) exponentially many 
objects of each of the preceding types.

● However, each of those objects is not very 
large.
● Each simple path has length no longer than the 

number of nodes in the graph.
● Each subset of a set has no more elements than 

the original set.
● This brings us to our next topic...



  

What if you need to search a large 
space for a single object?



  

Verifers – Again
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Verifers – Again
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Verifers – Again

Is there an ascending subsequence of 
length at least 7?
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Verifers – Again

Is there a simple path that goes 
through every node exactly once?



  

Verifers – Again
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Verifers

● Recall that a verifer for L is a TM V 
such that
● V halts on all inputs.
● w ∈ L    if    ∃c ∈ Σ*. V accepts ⟨w, c⟩.



  

Polynomial-Time Verifers

● A polynomial-time verifer for L is a 
TM V such that
● V halts on all inputs.
● w ∈ L    if    ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V's runtime is a polynomial in |w| (that is, V's 

runtime is O(|w|k) for some integer k)



  

The Complexity Class NP

● The complexity class NP (nondeterministic polynomial 
time) contains all problems that can be verifed in 
polynomial time.

● Formally:

             NP = { L | There is a polynomial-time 
                                 verifer for L }

● The name NP comes from another way of characterizing 
NP. If you introduce nondeterministic Turing machines 
and appropriately defne “polynomial time,” then NP is 
the set of problems that an NTM can solve in polynomial 
time.

● Useful fact: NP  ⊊ R. Come talk to me after class if you’re 
curious why!



  

  P =   { L | there is a polynomial-time
 decider for L }

   NP =   { L | there is a polynomial-time
verifer for L }



  

  R =   { L | there is a polynomial-time
 decider for L }

   RE =   { L | there is a polynomial-time
verifer for L }



  

We know that R ≠ RE.

So does that mean P ≠ NP?



  

Time-Out for Announcements!



  

Problem Sets

● Problem Set Six was due today at 3:00PM.
● Problem Set Seven is due next Wednesday at 

3:00PM.
● As a reminder, no late submissions will be accepted. 

Please budget enough time to get your submission in!
● Very smart idea: submit at least two hours early.

● As always, feel free to ask questions in ofice hours 
or online via Piazza.
● Note: Updated OH schedule for next Tuesday and 

Wednesday.



  

Final Exam Logistics

● Our fnal exam is Friday, August 16th from 7PM – 
10PM in Bishop Auditorium.

● The exam is cumulative. You’re responsible for 
topics from PS0 – PS7 and all of the lectures up 
through and including Unsolvable Problems.

● The exam is closed-book, closed-computer, and 
limited-note. You can bring one double-sided sheet 
of 8.5” × 11” notes with you to the exam, decorated 
any way you’d like.

● Students with OAE accommodations: if we don’t yet 
have your OAE letter, please send it to us ASAP.



  

Preparing for the Exam

● We’ve posted two practice fnal exams, with 
solutions, to the course website. They’re on 
the Extra Practice page under Resources.
● The practice exam we’ll be using during the 

practice fnal will be released on Wednesday.
● Review Session on Monday, August 12th 

here during class, led by your lovely TAs! 
● Practice Final on Wednesday, August 14th 

from 5:30-8:30 PM upstairs in Gates 104. 



  

Back to CS103!



  

And now...



  

The
 

Biggest Question
 

in
 

Theoretical Computer Science



  

P  ≟ NP
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P  ≟ NP

● The P ≟ NP question is the most important question in 
theoretical computer science.

● With the verifer defnition of NP, one way of phrasing 
this question is

If a solution to a problem can be checked eficiently,
can that problem be solved eficiently?

● An answer either way will give fundamental insights 
into the nature of computation.



  

Why This Matters

● The following problems are known to be eficiently 
verifable, but have no known eficient solutions:

● Determining whether an electrical grid can be built to link up 
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that multiple 
gene sequences could be a part of (shortest common 
supersequence).

● Determining the best way to assign hardware resources in a 
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple 
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have eficient solutions.

● If P ≠ NP, none of these problems have eficient solutions.



  

Why This Matters

● If P = NP:
● A huge number of seemingly dificult problems 

could be solved eficiently.
● Our capacity to solve many problems will scale 

well with the size of the problems we want to 
solve.

● If P ≠ NP:
● Enormous computational power would be 

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up 

with our curiosity.



  

What We Know

● Resolving P  ≟ NP has proven extremely dificult.
● In the past 45 years:

● Not a single correct proof either way has been 
found.

● Many types of proofs have been shown to be 
insuficiently powerful to determine whether 
P   ≟ NP.

● A majority of computer scientists believe P ≠ NP, 
but this isn't a large majority.

● Interesting read: Interviews with leading thinkers 
about P  ≟ NP:

● http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf


  

The Million-Dollar Question

The Clay Mathematics Institute has ofered 
a $1,000,000 prize to anyone who proves 

or disproves P = NP.



  

“My hunch is that [P ≟ NP] will be solved 
by a young researcher who is not 

encumbered by too much conventional 
wisdom about how to attack the problem.”

– Prof. Richard Karp
(The guy who frst popularized the P  NP≟  problem.)



  

“There is something very strange about 
this problem, something very philosophical. 

It is the greatest unsolved problem in 
mathematics […] It is the raison d’être of 
abstract computer science, and as long as 

it remains unsolved, its mystery will 
ennoble the feld.”

-Prof. Jim Owings
(Computability/Complexity theorist)



  

What do we know about P  ≟ NP?



  

Adapting our Techniques
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We know that R ≠ RE.

So does that mean P ≠ NP?



  

A Problem

● The R and RE languages correspond to 
problems that can be decided and verifed, 
period, without any time bounds.

● To reason about what's in R and what's in RE, 
we used two key techniques:
● Universality: TMs can run other TMs as 

subroutines.
● Self-Reference: TMs can get their own source code.

● Why can't we just do that for P and NP?



  

Theorem (Baker-Gill-Solovay): Any 
proof that purely relies on universality and 
self-reference cannot resolve P  ≟ NP.

Proof: Take CS154!



  

So how are we going to
reason about P and NP?



  

      NP        PREG

Problems in NP vary widely in their 
dificulty, even if P = NP.

 

How can we rank the relative dificulties 
of problems?



  

Reducibility



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.
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Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
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not a maximum 

matching.
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Maximum Matching
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set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A maximum 
matching.

A maximum 
matching.



  

Maximum Matching
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Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.



  

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and 
Flowers” gives a polynomial-time 
algorithm for fnding maximum 
matchings.
● He’s the guy with the quote about “better 

than decidable.”
● Using this fact, what other problems can 

we solve?
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Solving Domino Tiling



  

Solving Domino Tiling



  

In Pseudocode

boolean canPlaceDominoes(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}



  

Intuition:

Tiling a grid with dominoes can't be 
“harder” than solving maximum matching, 

because if we can solve maximum 
matching eficiently, we can solve domino 

tiling eficiently.



  

Another Example



  

Reachability

● Consider the following problem:

Given an directed graph G and nodes s 
and t in G, is there a path from s to t? 

● This problem can be solved in polynomial
time (use DFS or BFS).



  

Converter Conundrums

● Suppose that you want to plug your laptop into a 
projector.

● Your laptop only has a VGA output, but the 
projector needs HDMI input.

● You have a box of connectors that convert various 
types of input into various types of output (for 
example, VGA to DVI, DVI to DisplayPort, etc.)

● Question: Can you plug your laptop into the 
projector?



  

Converter Conundrums

Connectors
RGB to USB

VGA to 
DisplayPort

DB13W3 to CATV
DisplayPort to 

RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Connectors
RGB to USB

VGA to 
DisplayPort

DB13W3 to CATV
DisplayPort to 

RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI



  

Converter Conundrums

Connectors
RGB to USB

VGA to 
DisplayPort

DB13W3 to CATV
DisplayPort to 
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Connectors
RGB to USB

VGA to 
DisplayPort
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DisplayPort to 
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DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI
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Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Connectors
RGB to USB

VGA to 
DisplayPort

DB13W3 to CATV
DisplayPort to 

RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Connectors
RGB to USB

VGA to 
DisplayPort

DB13W3 to CATV
DisplayPort to 

RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI



  

In Pseudocode

boolean canPlugIn(List<Plug> plugs) {

 return isReachable(plugsToGraph(plugs),
                     VGA, HDMI);

}



  

Intuition:

Finding a way to plug a computer into a 
projector can't be “harder” than 

determining reachability in a graph, since 
if we can determine reachability in a graph, 
we can fnd a way to plug a computer into a 

projector.



  

Intuition:

Problem A can't be “harder” than problem 
B, because solving problem B lets us solve 

problem A.

bool solveProblemA(string input) {
    return solveProblemB(transform(input));
}



  

bool solveProblemA(string input) {
    return solveProblemB(transform(input));
}

● If A and B are problems where it's 
possible to solve problem A using the 
strategy shown above*, we write

A ≤p B. 

● We say that A is polynomial-time 
reducible to B.

* Assuming that transform
* runs in polynomial time.



bool solveProblemA(string input) {
    return solveProblemB(transform(input));
}

● This is a powerful general problem-solving
technique. You’ll see it a lot in CS161.



  

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions
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Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP



  

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP



  

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP



This ≤ₚ relation lets us rank the relative 
dificulties of problems in P and NP.

What else can we do with it?



  

Next Time

● NP-Completeness
● What are the hardest problems in NP?
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