

Complexity Theory
Part One

It may be that since one is customarily
concerned with existence, […] fniteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-fnite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

It may be that since one is customarily
concerned with existence, […] fniteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-fnite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

It may be that since one is customarily
concerned with existence, […] fniteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-fnite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

It may be that since one is customarily
concerned with existence, […] decidability,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-decidable algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

A Decidable Problem
● Presburger arithmetic is a logical system for reasoning

about arithmetic.

● ∀x. x + 1 ≠ 0

● ∀x. ∀y. (x + 1 = y + 1 → x = y)

● ∀x. x + 0 = x

● ∀x. ∀y. (x + y) + 1 = x + (y + 1)

● (P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

● Given a statement, it is decidable whether that statement can
be proven from the laws of Presburger arithmetic.

● Any Turing machine that decides whether a statement in
Presburger arithmetic is true or false has to move its tape
head at least times on some inputs of length n (for some
fxed constant c ≥ 1).

22cn

For Reference

● Assume c = 1.

220

= 2

221

= 4
222

= 16

223

= 256

224

= 65536

225

= 18446744073709551616
226

= 340282366920938463463374607431768211456

The Limits of Decidability

● The fact that a problem is decidable does not
mean that it is feasibly decidable.

● In computability theory, we ask the question

What problems can be solved by a computer?
● In complexity theory, we ask the question

What problems can be solved
eficiently by a computer?

● In the remainder of this course, we will
explore this question in more detail.

Where We've Been

● The class R represents problems that can be
solved by a computer.

● The class RE represents problems where “yes”
answers can be verifed by a computer.

The mapping reduction can be used to fnd
connections between problems.

Where We're Going

● The class P represents problems that can be
solved eficiently by a computer.

● The class NP represents problems where “yes”
answers can be verifed eficiently by a
computer.

Regular
Languages CFLs

All Languages

R RE

 All Languages

RERegular
Languages CFLs R

 Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages

The Setup

● In order to study computability, we
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer
these questions:
● What does “complexity” even mean?
● What is an “eficient” solution to a problem?

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

● Number of states.
● Size of tape alphabet.
● Size of input alphabet.
● Amount of tape required.
● Number of steps required.
● Number of times a given state is entered.
● Number of times a given symbol is printed.
● Number of times a given transition is taken.
● (Plus a whole lot more...)

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

● Number of states.
● Size of tape alphabet.
● Size of input alphabet.
● Amount of tape required.
● Amount of time required.
● Number of times a given state is entered.
● Number of times a given symbol is printed.
● Number of times a given transition is taken.
● (Plus a whole lot more...)

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

Number of states.

Size of tape alphabet.

Size of input alphabet.

Amount of tape required.
● Amount of time required.

Number of times a given state is entered.

Number of times a given symbol is printed.

Number of times a given transition is taken.

(Plus a whole lot more...)

What is an eficient algorithm?

Searching Finite Spaces

● Many decidable problems can be solved by
searching over a large but fnite space of
possible options.

● Searching this space might take a
staggeringly long time, but only fnite time.

● From a decidability perspective, this is totally
fne.

● From a complexity perspective, this may be
totally unacceptable.

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Longest Increasing Subsequences

● One possible algorithm: try all subsequences, fnd
the longest one that's increasing, and return that.

● There are 2n subsequences of an array of length n.
● (Each subset of the elements gives back a subsequence.)

● Checking all of them to fnd the longest increasing
subsequence will take time O(n · 2n).

● Nifty fact: the age of the universe is about 4.3 × 1026
nanoseconds old. That's about 285 nanoseconds.

● Practically speaking, this algorithm doesn't terminate
if you give it an input of size 100 or more.

A Diferent Approach

Patience Sorting

4 3 11 9 7 13 5 6 1 12 2 8 0 10

4

3

11

9

7

13

5

6

1

12

2

8

0

10

Place each number on top of a pile.

Put each number on top of the frst pile
whose top value is larger than it. (If you

can’t, make a new pile.)

Then, add a link to the top number in the
previous pile.

Place each number on top of a pile.

Put each number on top of the frst pile
whose top value is larger than it. (If you

can’t, make a new pile.)

Then, add a link to the top number in the
previous pile.

Patience Sorting

4 3 11 9 7 13 5 6 1 12 2 8 0 10

4

3

11

9

7

13

5

6

1

12

2

8

0

10

Trace backwards from the top of the last
pile. The numbers you visit form one of the
longest increasing subsequences of your

original sequence.

Trace backwards from the top of the last
pile. The numbers you visit form one of the
longest increasing subsequences of your

original sequence.

Patience Sorting

4 3 11 9 7 13 5 6 1 12 2 8 0 10

4

3

11

9

7

13

5

6

1

12

2

8

0

10

Trace backwards from the top of the last
pile. The numbers you visit form one of the
longest increasing subsequences of your

original sequence.

Trace backwards from the top of the last
pile. The numbers you visit form one of the
longest increasing subsequences of your

original sequence.

Patience Sorting

34 11 9 7 13 5 6 1 12 2 8 0 10

4

3

11

9

7

13

5

6

1

12

2

8

0

10

Trace backwards from the top of the last
pile. The numbers you visit form one of the
longest increasing subsequences of your

original sequence.

Trace backwards from the top of the last
pile. The numbers you visit form one of the
longest increasing subsequences of your

original sequence.

Longest Increasing Subsequences

● Theorem: There is an algorithm that can fnd the
longest increasing subsequence of an array in time
O(n²).
● It’s the previous patience sorting algorithm, with some

clever implementation tricks.
● This algorithm works by exploiting particular aspects

of how longest increasing subsequences are
constructed. It's not immediately obvious that it works
correctly.

● Phenomenal Exercise 1: Prove that this procedure
always works!

● Phenomenal Exercise 2: Show that you can actually
implement this same algorithm in time O(n log n).

Another Problem

E

A

F

C

D

B

Another Problem

E

A

F

C

D

B

To

From

Another Problem

E

A

F

C

D

B

To

From

Goal: Determine the
length of the shortest
path from A to F in

this graph.

Goal: Determine the
length of the shortest
path from A to F in

this graph.

Shortest Paths

● It is possible to fnd the shortest path in a
graph by listing of all sequences of
nodes in the graph in ascending order of
length and fnding the frst that's a path.

● This takes time O(n · n!) in an n-node
graph.

● For reference: 29! nanoseconds is longer
than the lifetime of the universe.

Shortest Paths

● Theorem: It's possible to fnd the
shortest path between two nodes in an n-
node, m-edge graph in time O(m + n).

● Proof idea: Use breadth-frst search!
● The algorithm is a bit nuanced. It uses

some specifc properties of shortest
paths and the proof of correctness is
nontrivial.

For Comparison

● Longest increasing
subsequence:
● Naive: O(n · 2n)
● Fast: O(n²)

● Shortest path
problem:
● Naive: O(n · n!)
● Fast: O(n + m).

Defning Eficiency

● When dealing with problems that search
for the “best” object of some sort, there
are often at least exponentially many
possible options.

● Brute-force solutions tend to take at least
exponential time to complete.

● Clever algorithms often run in time O(n),
or O(n2), or O(n3), etc.

Polynomials and Exponentials

● An algorithm runs in polynomial time if
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not

typically induce enormous changes to the
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce

huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided eficiently if
there is a TM that decides it in polynomial time.

Equivalently, L can be decided eficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
eficient computation, and it is

somewhat controversial.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
eficient computation, and it is

somewhat controversial.

The Cobham-Edmonds Thesis

● Eficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Eficient” runtimes:
● n1,000,000,000,000

● 10500

● Ineficient runtimes:
● 2n

● n!
● nn

● “Ineficient” runtimes:
● n0.0001 log n

● 1.000000001n

Why Polynomials?

● Polynomial time somewhat captures eficient
computation, but has a few edge cases.

● However, polynomials have very nice mathematical
properties:
● The sum of two polynomials is a polynomial. (Running one

eficient algorithm, then another, gives an eficient
algorithm.)

● The product of two polynomials is a polynomial. (Running
one eficient algorithm a “reasonable” number of times
gives an eficient algorithm.)

● The composition of two polynomials is a polynomial.
(Using the output of one eficient algorithm as the input to
another eficient algorithm gives an eficient algorithm.)

The Complexity Class P

● The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time
decider for L }

● Assuming the Cobham-Edmonds thesis, a
language is in P if it can be decided
eficiently.

Examples of Problems in P

● All regular languages are in P.
● All have linear-time TMs.

● All CFLs are in P.
● Requires a more nuanced argument (the

CYK algorithm or Earley's algorithm.)
● And a ton of other problems are in P as

well.
● Curious? Take CS161!

 Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages

 Undecidable Languages

Regular
Languages CFLs RP

What can't you do in polynomial time?

start

end

How many simple
paths are there
from the start
node to the
end node?

How many simple
paths are there
from the start
node to the
end node?

, , ,

How many
subsets of this
set are there?

How many
subsets of this
set are there?

An Interesting Observation

● There are (at least) exponentially many
objects of each of the preceding types.

● However, each of those objects is not very
large.
● Each simple path has length no longer than the

number of nodes in the graph.
● Each subset of a set has no more elements than

the original set.
● This brings us to our next topic...

What if you need to search a large
space for a single object?

Verifers – Again

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

Does this Sudoku problem
have a solution?

Verifers – Again

2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

Does this Sudoku problem
have a solution?

4 3 11 9 7 13 5 6 1 12 2 8 0 109 3 11 4 2 13 5 6 1 12 7 8 0 10

Verifers – Again

Is there an ascending subsequence of
length at least 7?

4 3 11 9 7 13 5 6 1 12 2 8 0 109 3 11 4 2 13 5 6 1 12 7 8 0 10

Verifers – Again

Is there an ascending subsequence of
length at least 7?

Verifers – Again

Is there a simple path that goes
through every node exactly once?

Verifers – Again

Is there a simple path that goes
through every node exactly once?

1

2

5

4

6

3

Verifers

● Recall that a verifer for L is a TM V
such that
● V halts on all inputs.
● w ∈ L if ∃c ∈ Σ*. V accepts ⟨w, c⟩.

Polynomial-Time Verifers

● A polynomial-time verifer for L is a
TM V such that
● V halts on all inputs.
● w ∈ L if ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V's runtime is a polynomial in |w| (that is, V's

runtime is O(|w|k) for some integer k)

The Complexity Class NP

● The complexity class NP (nondeterministic polynomial
time) contains all problems that can be verifed in
polynomial time.

● Formally:

 NP = { L | There is a polynomial-time
 verifer for L }

● The name NP comes from another way of characterizing
NP. If you introduce nondeterministic Turing machines
and appropriately defne “polynomial time,” then NP is
the set of problems that an NTM can solve in polynomial
time.

● Useful fact: NP ⊊ R. Come talk to me after class if you’re
curious why!

 P = { L | there is a polynomial-time
 decider for L }

 NP = { L | there is a polynomial-time
verifer for L }

 R = { L | there is a polynomial-time
 decider for L }

 RE = { L | there is a polynomial-time
verifer for L }

We know that R ≠ RE.

So does that mean P ≠ NP?

Time-Out for Announcements!

Problem Sets

● Problem Set Six was due today at 3:00PM.
● Problem Set Seven is due next Wednesday at

3:00PM.
● As a reminder, no late submissions will be accepted.

Please budget enough time to get your submission in!
● Very smart idea: submit at least two hours early.

● As always, feel free to ask questions in ofice hours
or online via Piazza.
● Note: Updated OH schedule for next Tuesday and

Wednesday.

Final Exam Logistics

● Our fnal exam is Friday, August 16th from 7PM –
10PM in Bishop Auditorium.

● The exam is cumulative. You’re responsible for
topics from PS0 – PS7 and all of the lectures up
through and including Unsolvable Problems.

● The exam is closed-book, closed-computer, and
limited-note. You can bring one double-sided sheet
of 8.5” × 11” notes with you to the exam, decorated
any way you’d like.

● Students with OAE accommodations: if we don’t yet
have your OAE letter, please send it to us ASAP.

Preparing for the Exam

● We’ve posted two practice fnal exams, with
solutions, to the course website. They’re on
the Extra Practice page under Resources.
● The practice exam we’ll be using during the

practice fnal will be released on Wednesday.
● Review Session on Monday, August 12th

here during class, led by your lovely TAs!
● Practice Final on Wednesday, August 14th

from 5:30-8:30 PM upstairs in Gates 104.

Back to CS103!

And now...

The

Biggest Question

in

Theoretical Computer Science

P ≟ NP

 P = { L | There is a polynomial-time
 decider for L }

 NP = { L | There is a polynomial-time
 verifer for L }

P ⊆ NP

Polynomial-Time
Decider for L

yes!

no!

input string (w)

 P = { L | There is a polynomial-time
 decider for L }

 NP = { L | There is a polynomial-time
 verifer for L }

P ⊆ NP

Polynomial-Time
Verifer for L

yes!

no!

input string (w)

certifcate (c)
(ignored)

P NP

Which Picture is Correct?

P NP

Which Picture is Correct?

P ≟ NP

● The P ≟ NP question is the most important question in
theoretical computer science.

● With the verifer defnition of NP, one way of phrasing
this question is

If a solution to a problem can be checked eficiently,
can that problem be solved eficiently?

● An answer either way will give fundamental insights
into the nature of computation.

Why This Matters

● The following problems are known to be eficiently
verifable, but have no known eficient solutions:

● Determining whether an electrical grid can be built to link up
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that multiple
gene sequences could be a part of (shortest common
supersequence).

● Determining the best way to assign hardware resources in a
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have eficient solutions.

● If P ≠ NP, none of these problems have eficient solutions.

Why This Matters

● If P = NP:
● A huge number of seemingly dificult problems

could be solved eficiently.
● Our capacity to solve many problems will scale

well with the size of the problems we want to
solve.

● If P ≠ NP:
● Enormous computational power would be

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up

with our curiosity.

What We Know

● Resolving P ≟ NP has proven extremely dificult.
● In the past 45 years:

● Not a single correct proof either way has been
found.

● Many types of proofs have been shown to be
insuficiently powerful to determine whether
P ≟ NP.

● A majority of computer scientists believe P ≠ NP,
but this isn't a large majority.

● Interesting read: Interviews with leading thinkers
about P ≟ NP:

● http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

The Million-Dollar Question

The Clay Mathematics Institute has ofered
a $1,000,000 prize to anyone who proves

or disproves P = NP.

“My hunch is that [P ≟ NP] will be solved
by a young researcher who is not

encumbered by too much conventional
wisdom about how to attack the problem.”

– Prof. Richard Karp
(The guy who frst popularized the P NP≟ problem.)

“There is something very strange about
this problem, something very philosophical.

It is the greatest unsolved problem in
mathematics […] It is the raison d’être of
abstract computer science, and as long as

it remains unsolved, its mystery will
ennoble the feld.”

-Prof. Jim Owings
(Computability/Complexity theorist)

What do we know about P ≟ NP?

Adapting our Techniques

 P = { L | there is a polynomial-time
 decider for L }

 NP = { L | there is a polynomial-time
verifer for L }

 R = { L | there is a polynomial-time
 decider for L }

 RE = { L | there is a polynomial-time
verifer for L }

We know that R ≠ RE.

So does that mean P ≠ NP?

A Problem

● The R and RE languages correspond to
problems that can be decided and verifed,
period, without any time bounds.

● To reason about what's in R and what's in RE,
we used two key techniques:
● Universality: TMs can run other TMs as

subroutines.
● Self-Reference: TMs can get their own source code.

● Why can't we just do that for P and NP?

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P ≟ NP.

Proof: Take CS154!

So how are we going to
reason about P and NP?

 NP PREG

Problems in NP vary widely in their
dificulty, even if P = NP.

How can we rank the relative dificulties
of problems?

Reducibility

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A matching, but
not a maximum

matching.

A matching, but
not a maximum

matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A maximum
matching.

A maximum
matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and
Flowers” gives a polynomial-time
algorithm for fnding maximum
matchings.
● He’s the guy with the quote about “better

than decidable.”
● Using this fact, what other problems can

we solve?

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

In Pseudocode

boolean canPlaceDominoes(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}

Intuition:

Tiling a grid with dominoes can't be
“harder” than solving maximum matching,

because if we can solve maximum
matching eficiently, we can solve domino

tiling eficiently.

Another Example

Reachability

● Consider the following problem:

Given an directed graph G and nodes s
and t in G, is there a path from s to t?

● This problem can be solved in polynomial
time (use DFS or BFS).

Converter Conundrums

● Suppose that you want to plug your laptop into a
projector.

● Your laptop only has a VGA output, but the
projector needs HDMI input.

● You have a box of connectors that convert various
types of input into various types of output (for
example, VGA to DVI, DVI to DisplayPort, etc.)

● Question: Can you plug your laptop into the
projector?

Converter Conundrums

Connectors
RGB to USB

VGA to
DisplayPort

DB13W3 to CATV
DisplayPort to

RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Connectors
RGB to USB

VGA to
DisplayPort

DB13W3 to CATV
DisplayPort to

RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Converter Conundrums

Connectors
RGB to USB

VGA to
DisplayPort

DB13W3 to CATV
DisplayPort to

RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Connectors
RGB to USB

VGA to
DisplayPort

DB13W3 to CATV
DisplayPort to

RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Connectors
RGB to USB

VGA to
DisplayPort

DB13W3 to CATV
DisplayPort to

RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Connectors
RGB to USB

VGA to
DisplayPort

DB13W3 to CATV
DisplayPort to

RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

In Pseudocode

boolean canPlugIn(List<Plug> plugs) {

 return isReachable(plugsToGraph(plugs),
 VGA, HDMI);

}

Intuition:

Finding a way to plug a computer into a
projector can't be “harder” than

determining reachability in a graph, since
if we can determine reachability in a graph,
we can fnd a way to plug a computer into a

projector.

Intuition:

Problem A can't be “harder” than problem
B, because solving problem B lets us solve

problem A.

bool solveProblemA(string input) {
 return solveProblemB(transform(input));
}

bool solveProblemA(string input) {
 return solveProblemB(transform(input));
}

● If A and B are problems where it's
possible to solve problem A using the
strategy shown above*, we write

A ≤p B.

● We say that A is polynomial-time
reducible to B.

* Assuming that transform
* runs in polynomial time.

bool solveProblemA(string input) {
 return solveProblemB(transform(input));
}

● This is a powerful general problem-solving
technique. You’ll see it a lot in CS161.

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

P

Polynomial-Time Reductions

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

This ≤ₚ relation lets us rank the relative
dificulties of problems in P and NP.

What else can we do with it?

Next Time

● NP-Completeness
● What are the hardest problems in NP?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

