Complexity Theory

Part One



It may be that since one is customarily
concerned with existence, [...] finiteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”
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It may be that since one is customarily
concerned with existence, [...] decidability,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-decidable algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”



A Decidable Problem

 Presburger arithmetic is a logical system for reasoning
about arithmetic.

Vx.x+1=#0

VWx.Vy. (x+1=y+1->x=y)
Vx. x + 0 =x

V. Vy. x+y)+1=x+(y+1)

(P(0) A Vy. (P(y) = P(y + 1))) = Vx. P(x)

 (Given a statement, it is decidable whether that statement can
be proven from the laws of Presburger arithmetic.

 Any Turing machine that decides whether a statement in
Presburger arlthmetlc is true or false has to move its tape
head at least 2* times on some inputs of length n (for some
fixed constant ¢ = 1).



For Reference

e Assumec = 1.



The Limits of Decidability

 The fact that a problem is decidable does not
mean that it is feasibly decidable.

* In computability theory, we ask the question
What problems can be solved by a computer?
* In complexity theory, we ask the question

What problems can be solved
efficiently by a computer?

 In the remainder of this course, we will
explore this question in more detail.



Where We've Been

 The class R represents problems that can be
solved by a computer.

* The class RE represents problems where “yes”
answers can be verified by a computer.



Where We're Going

* The class P represents problems that can be
solved efficiently by a computer.

 The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.
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The Setup

* In order to study computability, we
needed to answer these questions:

« What is “computation?”
« What is a “problem?”
« What does it mean to “solve” a problem?

* To study complexity, we need to answer
these questions:

 What does “complexity” even mean?
« What is an “efficient” solution to a problem?



Measuring Complexity

« Suppose that we have a decider D for some language L.
 How might we measure the complexity of D?



Measuring Complexity

« Suppose that we have a decider D for some language L.
 How might we measure the complexity of D?

 Number of states.

« Size of tape alphabet.

« Size of input alphabet.

« Amount of tape required.

« Amount of time required.

 Number of times a given state is entered.
 Number of times a given symbol is printed.
« Number of times a given transition is taken.
* (Plus a whole lot more...)



Measuring Complexity

« Suppose that we have a decider D for some language L.
 How might we measure the complexity of D?

« Amount of time required.



What is an efficient algorithm?



Searching Finite Spaces

 Many decidable problems can be solved by
searching over a large but finite space of
possible options.

* Searching this space might take a
staggeringly long time, but only finite time.

 From a decidability perspective, this is totally
fine.

 From a complexity perspective, this may be
totally unacceptable.



A Sample Problem
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the longest increasing
subsequence of this
sequence.
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A Sample Problem
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Goal: Find the length of
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sequence.




Longest Increasing Subsequences

* One possible algorithm: try all subsequences, find
the longest one that's increasing, and return that.

« There are 2n subsequences of an array of length n.
 (Each subset of the elements gives back a subsequence.)

* Checking all of them to find the longest increasing
subsequence will take time O(n - 2n).

* Nifty fact: the age of the universe is about 4.3 x 1026
nanoseconds old. That's about 28 nanoseconds.

* Practically speaking, this algorithm doesn't terminate
if you give it an input of size 100 or more.



A Different Approach



Patience Sorting
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Put each number on top of the first pile
whose top value is larger than it. (If you
can’t, make a new pile.)

Then, add a link to the top number in the
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Patience Sorting
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Trace backwards from the top of the last
pile. The numbers you visit form one of the
longest increasing subsequences of your




Patience Sorting

3119 7135 6 112 2 8

0

10

original sequence

Trace backwards from the top of the last
pile. The numbers you visit form one of the
longest increasing subsequences of your




Patience Sorting
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Longest Increasing Subsequences

« Theorem: There is an algorithm that can find the

longest increasing subsequence of an array in time
O(n?).

* It’s the previous patience sorting algorithm, with some
clever implementation tricks.

« This algorithm works by exploiting particular aspects
of how longest increasing subsequences are
constructed. It's not immediately obvious that it works
correctly.

« Phenomenal Exercise 1: Prove that this procedure
always works!

« Phenomenal Exercise 2: Show that you can actually
implement this same algorithm in time O(n log n).



Another Problem




Another Problem




Another Problem

Goal: Determine the
length of the shortest
path from A to F in
this graph.




Shortest Paths

It is possible to find the shortest path in a
graph by listing off all sequences of
nodes in the graph in ascending order of
length and finding the first that's a path.

e This takes time O(n - n!) in an n-node
graph.

* For reference: 29! nanoseconds is longer
than the lifetime of the universe.



Shortest Paths

« Theorem: It's possible to find the
shortest path between two nodes in an n-
node, m-edge graph in time O(m + n).

 Proof idea: Use breadth-first search!

* The algorithm is a bit nuanced. It uses
some specific properties of shortest
paths and the proof of correctness is
nontrivial.



For Comparison

 Longest increasing * Shortest path
subsequence: problem:

e Naive: O(n - 2") e Naive: O(n - n!)
 Fast: O(n?)  Fast: O(n + m).



Defining Efficiency

« When dealing with problems that search
for the “best” object of some sort, there
are often at least exponentially many

possible

options.

 Brute-force solutions tend to take at least

exponen

'ial time to complete.

 Clever al
or O(n?),

gorithms often run in time O(n),
or O(n?), etc.



Polynomials and Exponentials

* An algorithm runs in polynomial time it
its runtime is some polynomial in n.

 That is, time O(nk) for some constant k.
* Polynomial functions “scale well.”

« Small changes to the size of the input do not
typically induce enormous changes to the
overall runtime.

 Exponential functions scale terribly.

 Small changes to the size of the input induce
huge changes in the overall runtime.



The Cobham-Edmonds Thesis

A language L can be decided efficiently it
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently if
it can be decided in time O(n*) for some k € N.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is
somewhat controversial.




The Cobham-Edmonds Thesis

« Efficient runtimes: * Inefficient runtimes:
e 4n + 13 AL
e n3-2n?+ 4n * n!
* n log log n * nn

o “Efficient” runtimes: <« “Inefficient” runtimes:

° nl,OO0,000,000,000 ° n0.000l log n

¢ 10°% « 1.000000001"



Why Polynomials?

* Polynomial time somewhat captures efficient
computation, but has a few edge cases.

 However, polynomials have very nice mathematical
properties:

 The sum of two polynomials is a polynomial. (Running one
efficient algorithm, then another, gives an efficient
algorithm.)

 The product of two polynomials is a polynomial. (Running
one efficient algorithm a “reasonable” number of times
gives an efficient algorithm.)

« The composition of two polynomials is a polynomial.
(Using the output of one efficient algorithm as the input to
another efficient algorithm gives an efficient algorithm.)



The Complexity Class P

« The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

* Formally:

P = { L | There is a polynomial-time
decider for L }

 Assuming the Cobham-Edmonds thesis, a
language is in P if it can be decided
efficiently.



Examples of Problems in P

» All regular languages are in P.
« All have linear-time TMs.
« All CFLs are in P.

 Requires a more nuanced argument (the
CYK algorithm or Earley's algorithm.)

 And a ton of other problems are in P as
well.

e Curious? Take CS161!
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What can't you do in polynomial time?



How many simple

paths are there

from the start
node to the

end node?




?

How many

subsets of this
set are there




An Interesting Observation

 There are (at least) exponentially many
objects of each of the preceding types.

« However, each of those objects is not very
large.

 Each simple path has length no longer than the
number of nodes in the graph.

« Each subset of a set has no more elements than
the original set.

» This brings us to our next topic...



What it you need to search a large
space for a single object?



Verifiers - Again
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Does this Sudoku problem
have a solution?



Verifiers - Again

Does this Sudoku problem

have a solution?



Verifiers - Again
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Verifiers - Again

2 13[508] 1 12081 0 {10

Is there an ascending subsequence of
length at least 77?




Verifiers - Again

0O

Is there a simple path that goes
through every node exactly once?



Verifiers - Again

Is there a simple path that goes
through every node exactly once?



Verifiers

 Recall that a verifierforLisaTM V
such that

* V halts on all inputs.
e welL iff dc € 2* Vaccepts (w, c).



Polynomial-Time Verifiers

* A polynomial-time verifier for L is a
TM V such that

* V halts on all inputs.
e welL iff dc € 2* Vaccepts (w, c).

* V's runtime is a polynomial in |w| (that is, V's
runtime is O(|w|k) for some integer k)



The Complexity Class NP

 The complexity class NP (nondeterministic polynomial
time) contains all problems that can be verified in
polynomial time.

 Formally:

NP = { L | There is a polynomial-time
verifier for L }

 The name NP comes from another way of characterizing
NP. If you introduce nondeterministic Turing machines
and appropriately define “polynomial time,” then NP is
the set of problems that an NTM can solve in polynomial
time.

* Useful fact: NP < R. Come talk to me after class if you’'re
curious why!



NP

{ L | there is a polynomial-time
decider for L }

{ L | there is a polynomial-time
verifier for L }



RE

{ L | thereis a
decider for L }

{ L | thereis a
verifier for L }



We know that R # RE.

So does that mean P # NP?



Time-Out for Announcements!



Problem Sets

* Problem Set Six was due today at 3:00PM.

* Problem Set Seven is due next Wednesday at
3:00PM.

 As a reminder, no late submissions will be accepted.
Please budget enough time to get your submission in!

 Very smart idea: submit at least two hours early.

« As always, feel free to ask questions in office hours
or online via Piazza.

* Note: Updated OH schedule for next Tuesday and
Wednesday.



Final Exam Logistics

* Our final exam is Friday, August 16t from 7PM -
10PM in Bishop Auditorium.

« The exam is cumulative. You're responsible for
topics from PSO - PS7 and all of the lectures up
through and including Unsolvable Problems.

 The exam is closed-book, closed-computer, and
limited-note. You can bring one double-sided sheet
of 8.5” X 11” notes with you to the exam, decorated
any way you’d like.

« Students with OAE accommodations: if we don’t yet
have your OAE letter, please send it to us ASAP.



Preparing for the Exam

 We’ve posted two practice final exams, with
solutions, to the course website. They’'re on
the Extra Practice page under Resources.

 The practice exam we’ll be using during the
practice final will be released on Wednesday.

 Review Session on Monday, August 12th
here during class, led by your lovely TAs!

* Practice Final on Wednesday, August 14t
from 5:30-8:30 PM upstairs in Gates 104.



Back to CS103!



And now...



The
Biggest Question
in

Theoretical Computer Science






P = { L | There is a polynomial-time
decider for L }

NP = { L | There is a polynomial-time
verifier for L }

input string (w)>/ A @

Polynomial-Time
Decider for L

e




P = { L | There is a polynomial-time
decider for L }

NP = { L | There is a polynomial-time
verifier for L }

input string (w)>/ A @

Polynomial-Time
certificate (c) | Verifier for L @

(ignored) < D




Which Picture is Correct?

NP
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P<NP

 The P £ NP question is the most important question in
theoretical computer science.

 With the verifier definition of NP, one way of phrasing
this question is

If a solution to a problem can be checked efficiently,
can that problem be solved efficiently?

 An answer either way will give fundamental insights
into the nature of computation.



Why This Matters

 The following problems are known to be efficiently
verifiable, but have no known efficient solutions:

 Determining whether an electrical grid can be built to link up
some number of houses for some price (Steiner tree problem).

 Determining whether a simple DNA strand exists that multiple
gene sequences could be a part of (shortest common
supersequence).

* Determining the best way to assign hardware resources in a
compiler (optimal register allocation).

 Determining the best way to distribute tasks to multiple
workers to minimize completion time (job scheduling).

« And many more.

« If P = NP, all of these problems have efficient solutions.

« If P # NP, none of these problems have efficient solutions.



Why This Matters

« If P = NP:

* A huge number of seemingly difficult problems
could be solved efficiently.

* Our capacity to solve many problems will scale
well with the size of the problems we want to
solve.

« If P = NP:

« Enormous computational power would be
required to solve many seemingly easy tasks.

* Our capacity to solve problems will fail to keep up
with our curiosity.



What We Know

* Resolving P £ NP has proven extremely difficult.
* In the past 45 years:

 Not a single correct proof either way has been
found.

 Many types of proofs have been shown to be
insufficiently powerful to determine whether
P < NP.

A majority of computer scientists believe P # NP,
but this isn't a large majority.

* Interesting read: Interviews with leading thinkers
about P £ NP:

* http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf


http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

The Million-Dollar Question
CHALLENGE ACCEPTED

The Clay Mathematics Institute has offered
a $1,000,000 prize to anyone who proves
or disproves P = NP.



“My hunch is that [P £ NP] will be solved
by a young researcher who is not
encumbered by too much conventional
wisdom about how to attack the problem.”

- Prof. Richard Karp

(The guy who first popularized the P £ NP problem.)



“There is something very strange about
this problem, something very philosophical.
It is the greatest unsolved problem in

ma
abs

hematics [...] It is the raison d’étre of
‘ract computer science, and as long as

i

. remains unsolved, its mystery will
ennoble the field.”

-Prot. Jim Owings
(Computability/Complexity theorist)



What do we know about P £ NP?



Adapting our Techniques



NP

{ L | there is a polynomial-time
decider for L }

{ L | there is a polynomial-time
verifier for L }



RE

{ L | thereis a
decider for L }

{ L | thereis a
verifier for L }



We know that R # RE.

So does that mean P # NP?



A Problem

 The R and RE languages correspond to
problems that can be decided and verified,
period, without any time bounds.

 To reason about what's in R and what's in RE,
we used two key techniques:

* Universality: TMs can run other TMs as
subroutines.

* Self-Reference: TMs can get their own source code.
* Why can't we just do that for P and NP?



Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P £ NP.

Proof: Take CS154!



So how are we going to
reason about P and NP?



Problems in NP vary widely in their
difficulty, even if P = NP.

How can we rank the relative difficulties
of problems?



Reducibility



Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum matching is a matching with the
largest number of edges.



Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum matching is a matching with the
largest number of edges.
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Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum maitching is a matching with the
largest number of edges.

A matching, but
not a maximum
matching.




Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum maitching is a matching with the
largest number of edges.
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A maximum \\
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Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum maitching is a matching with the
largest number of edges.




Maximum Matching

Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum maitching is a matching with the
largest number of edges.

g ‘ a?




Maximum Matching

* Jack Edmonds' paper “Paths, Trees, and
Flowers” gives a polynomial-time
algorithm for finding maximum
matchings.

 He’s the guy with the quote about “better
than decidable.”

* Using this fact, what other problems can
we solve?



Domino Tiling
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Solving Domino Tiling




Solving Domino Tiling




Solving Domino Tiling




Solving Domino Tiling




Solving Domino Tiling



Solving Domino Tiling




Solving Domino Tiling




Solving Domino Tiling

|




In Pseudocode

boolean canPlaceDominoes(Grid G, int k) {
return hasMatching(gridToGraph(G), k);



Intuition:

Tiling a grid with dominoes can't be
“harder” than solving maximum matching,
because if we can solve maximum
matching efficiently, we can solve domino
tiling efficiently.



Another Example



Reachability

« Consider the following problem:

Given an directed graph G and nodes s
and t in G, is there a path from s to t?

« This problem can be solved in polynomial
time (use DFS or BFS).



Converter Conundrums

* Suppose that you want to plug your laptop into a
projector.

* Your laptop only has a VGA output, but the
projector needs HDMI input.

* You have a box of connectors that convert various
types of input into various types of output (for
example, VGA to DVI, DVI to DisplayPort, etc.)

* Question: Can you plug your laptop into the
projector?



Converter Conundrums

Connectors
RGB to USB
VGA to
DisplayPort
DB13W3 to CATV
DisplayPort to
RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI
VGA to RGB
DVI to DisplayPort
USB to S-Video
SDI to HDMI




Converter Conundrums
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Converter Conundrums
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Converter Conundrums
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Converter Conundrums
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In Pseudocode

boolean canPlugIn(List<Plug> plugs) {

return isReachable(plugsToGraph(plugs),
VGA, HDMI);



Intuition:

Finding a way to plug a computer into a
projector can't be “harder” than
determining reachability in a graph, since
if we can determine reachability in a graph,
we can find a way to plug a computer into a
projector.



bool solveProblemA(string input) {
return solveProblemB(transform(input));
}

Intuition:

Problem A can't be “harder” than problem
B, because solving problem B lets us solve
problem A.



bool solveProblemA(string input) {
return solveProblemB(transform(input));
}

 If A and B are problems where it's
possible to solve problem A using the
strategy shown above*, we write

A =, B.

 We say that A is polynomial-time
reducible to B.

* Assuming that transform
runs in polynomial time.



bool solveProblemA(string input) {
return solveProblemB(transform(input));
}

» This is a powertful general problem-solving
technique. You’ll see it a lot in CS161.



Polynomial-Time Reductions

e ITA spB and B € P, then A € P.



Polynomial-Time Reductions

e ITA spB and B € P, then A € P.



Polynomial-Time Reductions

e ITA spB and B € P, then A € P.



Polynomial-Time Reductions

e ITA spB and B € P, then A € P.
o ITA spB and B € NP, then A € NP.



Polynomial-Time Reductions

e ITA spB and B € P, then A € P.
o ITA spB and B € NP, then A € NP.
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Polynomial-Time Reductions

e ITA spB and B € P, then A € P.
o ITA spB and B € NP, then A € NP.
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Polynomial-Time Reductions

e ITA spB and B € P, then A € P.
o ITA spB and B € NP, then A € NP.
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This <p relation lets us rank the relative
difficulties of problems in P and NP.

What else can we do with it?



Next Time

« NP-Completeness
 What are the hardest problems in NP?
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